

Fabio BISEGNA¹ Flavia VESPASIANO¹ Laura POMPEI¹ Chiara BURATTINI¹ Alessandro BELLUCCI¹ Emiliano BELLI¹ Francesco DI VITTORIO¹ Laura BLASO²

1 – "La Sapienza" University of Rome, Rome, Italy
2 - Smart Cities and Communities Laboratory, ICER Division, TERIN Department, Rome, Italy

Towards the decarbonization of urban communities: evaluation of smart and green strategies to reduce gas carbon emissions

«Humanity has the ability to make development sustainable to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs»

Energy Sustainability

Introduction of **renewable energy sources**, reduction **of greenhouse gas emissions**, etc.

Environmental Sustainability

Promotion of **biodiversity**, preservation **ecosystems**, reduction of **pollution**, etc.

In order to address the challenges posed by the concept of **sustainability** in the contemporary era, it is necessary to turn to the concept of **smart cities**.

the smart cities can help in improving the sustainability level of a city and enhance the balance in its assessment

Analize data to assess the level of sustainability

- Citizens can participate in the governance
 - **Priority** to the **sustainable actions**

۲

To evaluate the performances its important to collect Key Performance Indicators.

They allow to:

Measure the **impact of selected strategies** and **promoting energy sustainability**

Adapt and **optimize ongoing strategies** to ensure **long-term benefits**

The **aim of the work** is to evaluate the **effectiveness** of integrated **smart city initiatives** by defining and monitoring **KPIs**.

CASE STUDY

The case study is located within the **third municipality of Rome**, with a total extension of 97.82 km2

In order to ensure collective participation in the planning and management of the city, general **satisfaction ratings** of the inhabitants of the areas concerned:

13

12

10

Photovoltaic Plant Simulations

Action:

Redevelopment of the former landfill site and conversion of the principal structure into a **depot for electric buses**, with a **photovoltaic system** installed on the roof

Softwares:

AutoCAD 3D, PVsyst

Action technical sheet				
Surface PV plant [m ²]	5397			
PV panel model	Trinasolar TSM-DE15M-(II)-400			
Power [Wp]	400			
Power PV plant [kWp]	1062			
Inverter	Emerson SPV 1800			
Annual producibility [kWh/kW/yr]	1422			
Electrical buses	Mercedes eCitaro 3-doors			

Intelligent Traffic Lights Simulations

Action:

Introduction of smart traffic lights to reduce traffic congestion and CO₂ emissions

Software:

NetLogo, an agent-based modelling platform used for simulating and studying complex systems

The model depicts a principal road intersecting with two perpendicular side roads.

Action technical sheet				
Tiles dimensions	4 x 4 meters			
Model spatial domain	400 x 200 tiles			
Probability cars	70%			
Green lights sliders	50 (prim) and 60 (sec)			
Real road section	2.5 km, 8 traffic lights			
Estimated vehicles	8000 vehicles in 4 h			
Days of traffic	200			

Incidence matrix

Quantitative analysis of the proposed strategies

To construct the smart matrix:

- Definition of the smart axes
- Definition of the smart indicators related to each smart axes
- Calculation of the correction factor
- Calculation of the mean value for each indicator
- Scaling procedure and attribution of values
- Final ranking

Smart Axes	Key Performance Indicators	units of measurement	
Energy	En 1 - Primary non-renewable energy saved	Toe/yr	
	En 2 - Renewable primary energy produced	Toe/yr	
	En 3 - Fuel savings	l/yr	
Economy	Ec 1 - Investment cost	€/yr	
	Ec 2 - Economic savings	€/yr	
	Ec 3 - Investment payback time	yrs	
Community	Co 1 - Satisfaction index	%	
	Co 2 - Time saved	min	
	Co 3 - Social cost reduction	€/yr	
Environment	it Ev 1 - Tonnes of CO ₂ saved $t CO_2/yr$		
Mobility	Mo 1 - Travel time reduction	min	

Results: Photovoltaic systems

- Reduction of CO₂ emissions is 36 tonnes per year
- Total non-renewable primary energy saved is then equal to 2 Toe/y

- The investment amounts to €2,601,000, with an estimated economic saving of €276,298 per year
 - The investment is projected to yield a 19-year payback period

THE 1ST SMART CITIES, TOWNS, RURAL AND MOUNTAIN VILLAGES INTERNATIONAL CONGRESS

La.Pi.S.

Results: Smart Traffic Lights

En 3 - Fuel savings

(l/yr)

Ec 1 - Investment

- Intelligent traffic lights can result in a 5% reduction in fuel consumption and CO₂ emissions
 - Reduced crossing time and increased average vehicle speed

 The annual economic savings amount to € 498,484, guaranteed by the reduction in social costs associated with CO₂ emissions and traffic congestion and fuel savings

Results: Matrix Ranking

		Scenari			
Axes	Indicator	Smart traffic lights	Landfill	Library	Smart streetlights
Energy	[En]1	5.00	-3.25	0.00	-3.30
	[En]2	0.00	5.00	0.00	0.00
	[En]3	4.03	5.00	0.00	0.00
Economy	[Ec]1	2.92	-5.00	5.00	5.00
	[Ec]2	5.00	1.98	0.00	-3.23
	[Ec]3	3.82	-5.00	0.00	-0.05
Community	[Co]1	-2.87	1.13	5.00	-5.00
	[Co]2	5.00	0.00	0.00	0.00
	[Co]3	5.00	-3.66	0.00	-5.00
Environment	[Ev]1	5.00	0.94	0.00	-3.87
Mobility	[Mo]1	5.00	0.00	0.00	0.00
Economic feasability		0.908	0.000	0.998	0.998
Time feasability		0.833	0.000	0.972	0.917
Somma		39.64	-2.87	11.97	-13.53

CONCLUSIONS

Two scenarios for the integration of renewable energy sources into urban infrastructure were proposed:

Installation of a photovoltaic (PV) field on the roof of an abandoned building to power an electric bus line

Deployment of smart traffic lights

Both were **analyzed through KPIs** deemed useful for the characterisation

Both resulted in a significant reduction of CO₂ emission, significantly contributing to the decarbonisation objectives of European sustainability programmes and the development of energy districts

The first scenario also increased the share of renewable energy produced and self-consumed on site

THE 1ST SMART CITIES, TOWNS, RURAL AND MOUNTAIN VILLAGES INTERNATIONAL CONGRESS

COMMUNICATION PARTNER

