

Elisa FRATTON¹ Davide CLAUSER¹

1 – SYSTRA S.p.A.

Exploring Linked Building Data: Enhancing Urban Development with Semantic Web Technologies for the integrated cities of tomorrow

What is Linked Building Data (LBD)?

- is a concept that involves the integration of data from various sources related to buildings and urban environments
- this integration is facilitated by the use of standardised formats and ontologies, which enable different systems to communicate and share information seamlessly
- by applying the principles of web pages, LBD allows for the creation of rich and interoperable datasets that can be used for a wide range of applications

Which kind of data do we have?

- Environmental data (temperature, humidity, air quality, water level, etc.)
- Imagery data & 3D mapping data (aerial)
- Building performance data (energy consumption, occupancy levels, etc.)
- Structural data (sensors for health monitoring that detect stress, strain, deformation, etc.)
- Mobility data (real-time traffic detection, crowd detection, etc.)

How can be possible to integrate different kind of data in a comprehensive, interconnected view of the built environment?

- Uniform Resource Identifiers (URIs): these provide unique identifiers for data objects, ensuring that each element can be referenced unambiguously across datasets
- Resource Description Framework (RDF): a graph-based data representation format that allows for flexible and interlinked data structures
- SPARQL: a query language for RDF data, facilitating complex queries across linked datasets

How can we associate attributes and logical relationships with data?

ONTOLOGIES!

- Industry Foundation Classes (IFC): a standard for BIM that has been extended to the web as ifcOWL, enabling its integration with other web data.
- Building Topology Ontology (BOT): a lightweight ontology for describing the topological aspects of buildings.
- BRICK Schema: an open-source effort to standardize metadata for buildings, particularly focusing on operational data
- and others

Benefits of Linked Building Data

- provides a common framework for data exchange, thus fostering collaboration among different stakeholders (architects, engineers, contractors, facility managers, etc.)
- leads to more efficient project delivery and reduces the risk of errors and misunderstandings
- informs decision-making in areas such as site selection, building design, and operational strategies to minimize environmental impact
- monitoring and managing facilities more effectively (detailed analysis, optimization, predictive manteinance&reduced downtimes)

A Scenario of Linked Data in the Building Domain

A Scenario of Linked Data in the Building Domain

Implementation of Linked Data on an Urban Scale

The objective of a smart city based on the linked data concept is to develop a model that allows a type of interrogation that can be done by streaming over the internet, thereby providing considerable opportunities and access to this type of data.

- Many more stakeholders
- Extended and/or different time spans
- Clear management framework to establish:
 - ownership and responsibility of the data,
 - centralized urban data platform
 - advanced tools to implement data analytics, visualization and interactions among data on the centralized platform

Practical applications around the globe

1) HELSINKI'S DIGITAL TWIN

Practical applications around the globe

1) HELSINKI'S DIGITAL TWIN

1	PRODUCTION OF THE TWIN MODELS
2	SHARING THE TWIN MODELS AS OPEN DATA
3	TWIN MODELS AS A SMART DEVELOPMENT PLATFORM
4	TWIN MODELS AS A SIMULATION PLATFORM
5	TWIN MODELS IN CITY PROCESSES

Figure – The three semantic parts of the WaterBoundarySurface class

Diagram – UML diagram of CityGML waterbody

THE 1st SMART CITIES, TOWNS, RURAL AND MOUNTAIN VILLAGES INTERNATIONAL CONGRESS

La.Pi.S.

Practical applications around the globe

1) HELSINKI'S DIGITAL TWIN

Diagram – Overall architecture of CityGML model's data infrastructure

Practical applications around the globe

1) HELSINKI'S DIGITAL TWIN

Practical applications around the globe

1) HELSINKI'S DIGITAL TWIN

- PRODUCTION OF THE TWIN MODELS
 SHARING THE TWIN MODELS AS OPEN DATA
- 4 TWIN MODELS AS A SIMULATION PLATFORM
- 5 TWIN MODELS IN CITY PROCESSES

Figure – Twin model as a simulation platform (solar analysis)

Practical applications around the globe

2) SMART NATION SINGAPORE

Practical applications around the globe

2) SMART NATION SINGAPORE

THE 1ST SMART CITIES, TOWNS, RURAL AND MOUNTAIN VILLAGES INTERNATIONAL CONGRESS

COMMUNICATION PARTNER

